

中国认可 国际互认 检测 TESTING CNAS L5772

Test Report

Applicant: RAY-TECH International Limited

Address: Block A,2013 Culture Maker Park, Henggang, Shenzhen, China

The following merchandise was (were) submitted and identified by client as:

Sample Name: Battery Spirit
Style No.: Battery Spirit

Manufacturer: RAY-TECH International Limited

Address: Block A,2013 Culture Maker Park, Henggang, Shenzhen, China

Sample Received Date: Jan. 17, 2018
Completed Date: Jan. 23, 2018

Test Requested and Conclusion(s):

No.	Test Sample	Standard and Requirement	Conclusion(s)
40		RoHS Directive 2011/65/EU and its subsequent amendments regulation EU No.2015/863.	to to to
10	Submitted sample	- Lead (Pb), Cadmium(Cd), Mercury(Hg), Hexavalent Chromium(Cr ⁶⁺), PBBs and PBDEs, Phthalates (DBP,	PASS
×0	20 20 20 E	BBP,DEHP,DIBP)	0x 0x 0x

Test Result(s): Please refer to next page(s).

Raul Cheng / P & C Department General Manager DongGuan Precise Testing and Certification Corp. Ltd.

Test Result(s):

RoHS - Lead (Pb)/Cadmium(Cd)/Mercury(Hg)/Hexavalent Chromium(Cr⁶⁺)/PBBs/PBDEs <u>Test Method:</u> IEC62321-3-1: 2013, IEC62321-5: 2013, IEC62321-4: 2013, IEC 62321-7-1:2015, IEC 62321-7-2: 2017, analyzed by EDXRF & AAS & ICP-AES & GC-MS & UV-Vis.

S. Co		EDXRF Result					Chemical	
No.	Material Description	Pb	Cd	Hg	Cr	Br	Result (mg/kg)	Conclusion
1	White plastic(shell)	BL	BL	BL	BL	BL	<u> </u>	PASS
2	Black plastic with white printing(wire jacket)	BL	BL	BL	BL	BL	1 40 TO 40	PASS
3	Coppery metal(wire)	BL	BL	BL	BL	(° -5(PASS
4	Silvery metal(plug)	BL	BL	BL	BL	~ - ·		PASS
5	Blue PCB (PCB"Rev03 1850")	BL	BL	BL	BL	OL	PBBs:N.D. PBDEs:N.D.	PASS
6	Gray body(inductor)	BL	BL	BL	BL	BL	1 20 20 X	PASS
7	Black body(diode)	BL	BL	BL	BL	BL		PASS
8	Black plastic with white printing (capacitor sleeve)	BL	BL	BL	BL	BL	\$ \$ \$ \$ \$ \$6 \$6	PASS
9	Silvery metal (capacitor shell)	BL	BL	BL	BL	0 - 1	10 -10 K	PASS
10	Black rubber(capacitor)	BL	BL	BL	BL	BL	<u> </u>	PASS
11	Transparent soft plastic (capacitor)	BL	BL	BL	BL	BL	1 10 TO 10	PASS
12	Brown paper with liquid (capacitor film)	BL	BL	BL	BL	BL	40 40 K	PASS
13	Silvery metal (capacitor foil)	BL	BL	BL	BL	0 -X	, 40 40 40	PASS
14	Dull silvery metal (capacitor foil)	BL	BL	BL	BL	0 -K	10 40 40 40	PASS
15	Silvery metal (capacitor connector)	BL	BL	BL	BL	0 - 80	10 70 N	PASS
16	Silvery metal (capacitor pin)	BL	BL	BL	BL	0-8	10 70 K	PASS
17	Silvery metal (USBsocket)	BL	BLO	BL	BL	0-3	50 50 50	PASS
18	White plastic(pin fixture)	BL	BL	BL	BL	BL		PASS
19	Silvery metal(pin)	BL	BL	BL	BL (60 - Su		PASS
20	Black body(IC)	BL	BL.	BL	BL	BL	0 -0 -0	PASS

20	Material Description	EDXRF Result					Chemical	1 XO XO
No.		Pb	Cd	Hg	Cr	Br	Result (mg/kg)	Conclusion
21	Transparent body(LED)	BL	BL	BL	BL	BL	€ 2 €	PASS
22	Brown body (chip capacitor)	BL	BL	BL	BL	BL	40 40 40	PASS
23	Black body with white printing(chip resistor)	BL	BL	BL	BL	BL	1 40 40 40	PASS
24	Black body(audion)	BL	BLO	BL	BL	BL) 2G =2G 2G	PASS
25	Silvery metal (PCB"Rev03 1850")	BL	BL	BL	BL	8,	8, 8, 8,	PASS
26	Black plastic(plug)	BL	BL	BL	BL	BL	\$ 4 8	PASS
27	Red plastic with black printng(wire)	BL	BLO	BL	BL	BL	\$60 €60 \$4	PASS
28	Black plastic with white printing(wire)	BL	BLO	BL	BL	BL	10 70 N	PASS
29	Silvery metal (amphenol connector)	BL	BLO	BL	BL	0-70	1 00 - 00 00	PASS

Note:

- 1. mg/kg = milligram per kilogram (ppm).
- 2. N.D. = Not Detected (<RL).
- 3. Negative = Absence of Cr⁶⁺.
- 4. Positive = Presence of Cr⁶⁺: the detected concentration in boiling-water-extraction solution is equal or greater than 0.02 mg/kg with 50 cm² sample surface area.
- 5. The result are obtained by EDXRF for primary screening, if the result exceeds the below limit (BL), and further chemical testing.

Screening limits in mg/kg for regulated elements in various matrices

Elements	Polymer	Metal	Composite Materials
Pb	BL≤(700-3σ) <x<(1300+3σ)≤< td=""><td>BL≤(700-3σ)<x<(1300+3σ)≤< td=""><td>BL≤(500-3σ)<x<(1500+3σ)≤< td=""></x<(1500+3σ)≤<></td></x<(1300+3σ)≤<></td></x<(1300+3σ)≤<>	BL≤(700-3σ) <x<(1300+3σ)≤< td=""><td>BL≤(500-3σ)<x<(1500+3σ)≤< td=""></x<(1500+3σ)≤<></td></x<(1300+3σ)≤<>	BL≤(500-3σ) <x<(1500+3σ)≤< td=""></x<(1500+3σ)≤<>
	OL	OL	OL
Cd	BL≤(70-3σ) <x<(130+3σ)≤ OL</x<(130+3σ)≤ 	BL≤(70-3σ) <x<(130+3σ)≤ ol<="" td=""><td>LOD<x<(150+3σ)≤ol< td=""></x<(150+3σ)≤ol<></td></x<(130+3σ)≤>	LOD <x<(150+3σ)≤ol< td=""></x<(150+3σ)≤ol<>
6, 6,	BL≤(700-3σ) <x<(1300+3σ)≤< td=""><td>BL≤(700-3σ)<x<(1300+3σ)≤< td=""><td>BL≤(500-3σ)<x<(1500+3σ)≤< td=""></x<(1500+3σ)≤<></td></x<(1300+3σ)≤<></td></x<(1300+3σ)≤<>	BL≤(700-3σ) <x<(1300+3σ)≤< td=""><td>BL≤(500-3σ)<x<(1500+3σ)≤< td=""></x<(1500+3σ)≤<></td></x<(1300+3σ)≤<>	BL≤(500-3σ) <x<(1500+3σ)≤< td=""></x<(1500+3σ)≤<>
Hg	00 00 00 00	OLO	00 00 00 00
Cr	BL≤(700-3σ) <x< td=""><td>BL≤(700-3σ)<x< td=""><td>BL≤(500-3σ)<x< td=""></x<></td></x<></td></x<>	BL≤(700-3σ) <x< td=""><td>BL≤(500-3σ)<x< td=""></x<></td></x<>	BL≤(500-3σ) <x< td=""></x<>
Br	BL≤(300-3σ) <x< td=""><td>-X0 X0 X0 X0 X0</td><td>BL≤(250-3σ)<x< td=""></x<></td></x<>	-X0 X0 X0 X0 X0	BL≤(250-3σ) <x< td=""></x<>

BL = Below Limit, OL = Over Limit, IN = Inconclusive, LOD = Limit of Detection

Chemical Testing - Detection Limit & 2011/65/EU Limit:

No	Name of Chemicals	Detection Limit (mg/kg)	2011/65/EU Limit (mg/kg)
64 61	Lead (Pb)	65 65 6	1000
2	Cadmium (Cd)	5	100
3	Mercury (Hg)	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1000
4	Chromium VI (Cr VI)	Non-metal: 10 Metal: Negative	Non-metal: 1000 Metal: Negative
4° 4'	Polybromobiphenyls (PBBs) -Bromobiphenyl (MonoBB) -Dibromobiphenyl (DiBB) -Tribromobiphenyl (TriBB) -Tetrabromobiphenyl	1 40 40 40 40 4	
5 5	(TetraBB) -Pentabromobiphenyl (PentaBB) -Hexabromobiphenyl (HexaBB)	Each 5	Sum: 1 000
6° 6"	-Heptabromobiphenyl (HeptaBB) -Octabromobiphenyl (OctaBB)		
4 6 6 F	-Nonabromobiphenyl (NonaBB) -Decabromobiphenyl (DecaBB)		
6 6 6 C	Polybromodiphenyl ethers (PBDEs)		a se se se
Sec Se	-Bromodiphenyl ether (MonoBDE) -Dibromodiphenyl ether (DiBDE)		to see see see
of of	-Tribromodiphenyl ether (TriBDE) -Tetrabromodiphenyl ether (TetraBDE)		to the the the
6	-Pentabromodiphenyl ether (PentaBDE)	Each 5	Sum: 1 000
6, 6,	-Hexabromodiphenyl ether (HexaBDE)		6, 6, 6,
of of	-Heptabromodiphenyl ether (HeptaBDE) -Octabromodiphenyl ether (OctaBDE)		e de de de
Sec Sec	-Nonabromodiphenyl ether (NonaBDE) -Decabromodiphenyl ether (DecaBDE)		to sto sto sto

Test Result(s):

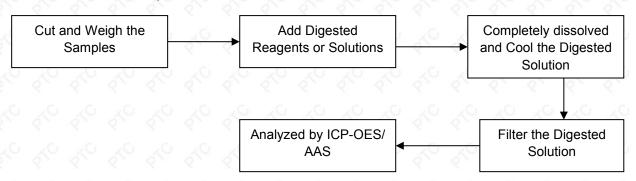
ROHS - Phthalates DIBP, DBP, BBP, DEHP

Method: IEC 62321-8: 2017, analyzed by Gas Chromatograph-Mass Spectrometry (GC-MS).

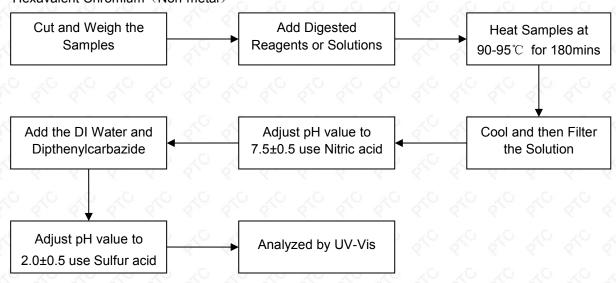
Substances	O DBP	O BBP	DEHP	DIBP	20 20 20
CAS No.	84-74-2	85-68-7	117-81-7	84-69-5	8, 8, 8,
Limit (mg/kg)	1000	1000	1000	1000	Conclusion
RL (mg/kg)	50	50	50	50	X X X
Material No.	CO SCO SCO	and the teach			
1+2+18	N.D.	N.D.	N.D.	N.D.	PASS
5	N.D.	N.D.	N.D.	N.D.	PASS
0 8 0	N.D.	O N.D.	N.D.	N.D	PASS
12	N.D.	N.D.	N.D.	N.D.	PASS
10	N.D.	N.D.	N.D.	N.D.	PASS
26+27+28	N.D.	N.D.	N.D.	N.D.	PASS

Note: 1. mg/kg = milligram per kilogram (ppm).

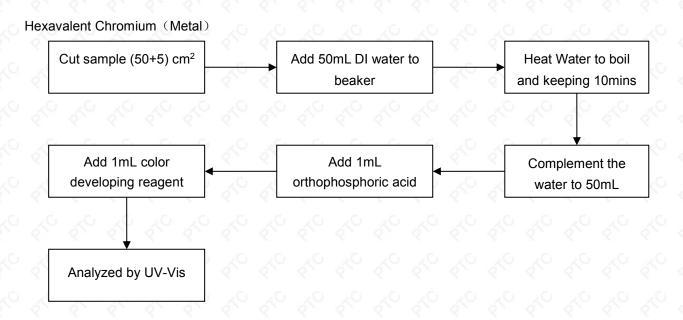
2. N.D. = Not Detected (<RL).

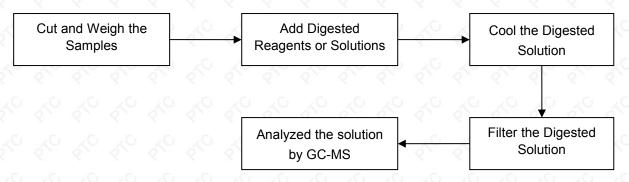

3. RL=Reporting Limit.

Test Material The following i	materials apply only to the samples submitted for	chemical testing.
Material No.	Description	Location
1	White plastic	shell
2	Black plastic with white printing	wire jacket
<u> </u>	Blue PCB	PCB"Rev03 1850"
8	Black plastic with white printing	capacitor sleeve
10	Black rubber	capacitor
12	Brown paper with liquid	capacitor film
18	White plastic	pin fixture
26	Black plastic	O CO PlugO CO CO
27	Red plastic with black printng	wire
28	Black plastic with white printing	wire

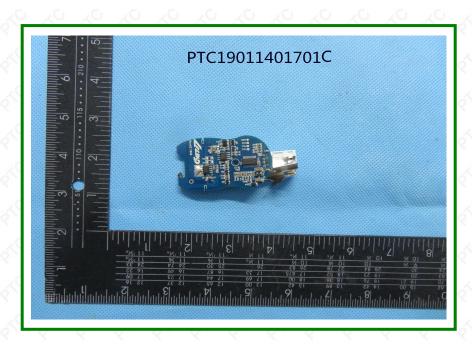


Test Process Flow:


1. Lead, Cadmium, Mercury


2. Hexavalent Chromium (Non-metal)

3. PBBs & PBDEs, Phthalates


Photo(s) of Sample:

Report No.: PTC19011401701C-EN01 Issue Date: Jan. 23, 2018 Page 10 of 10

End of Report

This report is issued according to the general clauses in www.ptc-testing.com by PTC. Responsibility, guarantee and law restriction are defined in the general service clauses. The report is only responsible for the submitted sample(s) except as otherwise noted.

The report could not be copied without permission

DongGuan Precise Testing and Certification Corp. Ltd. (PTC)

Building D, Baoding Technology Park, Guangming 2th Road, Guangming Community,
Dongcheng District, Dongguan, Guangdong, China
Tel: 86-769-38808222 Fax: 86-769-38826111 http://www.ptc-testing.com